Componential Model of Reading: Orthographic and environmental influences

- R. Malatesha Joshi
- Texas A \& M University
- mioshi@tamu.edu

University of Jyväskylä September 12, 2018

- P. G. Aaron, Indiana State University, USA
- Bae, Han Suk, Dong-A University, S. Korea
- Breznitz, Zvia, University of Haifa, Israel
- Erbeli, Florina, University of Ljubljana, Slovenia
- Gooden, Regina, Neuhaus Center, USA
- Grigorenko, Elena, Moscow State University \& University of Houston
- Hoien, Torleiv, Stanvanger Institute, Norway
- Ji, Xuejun Ryan, University of British Columbia, Canada
- McBride, Cammie, Chinese University of Hong Kong, China
- Nakamura, Pooja, American Institute of Research, USA
- Nishanimath, Surendranath, Samveda Teaching and Research Center, India
- Pittman, Ramona, Texas A \& M University, San Antonio, USA
- Quiroz, Blanca, Stanford University, USA
- Tao Sha, Cognitive Neuroscience Lab, Beijing, China
- Singh, Nandini, National Brain Research Centre, India
- Yeon, Sookkyung, Mokpo National University, S. Korea
- Yin, Li, Tsingua University, Beijing, China
- Zhang, S. Texas A \& M University, USA
- Zhao, Jing, Sun Yet Sen University, China
- Annual Meeting of the Association for Reading and Writing in Asia (ARWA)
- Feb. 29-March 1, 2019
- Goa, India

Componential Model of Reading: Orthographic and environmental influences

- Introduction:
- (2015) About 1 Billion (UNESCO)
- Approximately 25% or 60 million adults and schoolage children in the U.S. have difficulty acquiring reading and spelling skills.
- $1 / 3^{\text {rd }}$ of fourth grade students;
- Among minority, inner-city children about $2 / 3$ rd (67\%)
- Illiteracy affects everyone, individual, society, and the nation
- $>50 \%$ of the adolescents with criminal problems and history of substance abuse have reading problems
- 85\% in juvenile court system are functionally illiterate.
- > 70\% prison inmates cannot read above $4^{\text {th }}$ grade level.
- However, provide literacy help, about 16\% chance of returning;
- Without help in literacy; 70\% chance of returning to prison.
- Costs each taxpayer \$25,000 per year per inmate and nearly double that amount for juvenile offenders.
- 3. At the National Level
- Health care expenses (USA)
- 3rd grade and below:
- 10,700 dollars / year
- at least 4th grade:
- 2,900 dollars / year
- More than 3 times (Weiss et al., 2004)
- Illiteracy costs > 1 trillion USD each year (WLF, 2015)
- NIH: 'national public health issue'

- Advantages of being literate

PRINT EXPOSURE

Print exposure andVocabulary

"The observation that individuals who read more have better verbal abilities is among one of the most robust findings in reading research." McCreath et al., 2017, p. 373.

Word Knowledge and World Knowledge

NEUROLOGICAL

- Dementia
- Cortical thickness

Goldman \& Manis 2012

Not only reading proficiency but teaching reading also is good
Juel (2002)
Carlson (2016) - Johns Hopkins - Experience Corps Trial
Senior citizens volunteered to teach reading skills to K-3
Brain-imaging studies - beneficial changes in their brains.

- Reasons for illiteracy:
- Instructional and Environmental Reasons (Vellutino \& Scanlon, 2003)
- A. Instructional Reasons:
- Ehri (1989): Inadequate instruction spawning limited reading and spelling development and limited phonological awareness is the primary cause of reading disability
- Blachman, Texas group, Florida Group, . .

- Poor instruction resulting in poor reading

 performance is especially true at the early primary grades.- Juel (1988): Children who read poorly at the end of first grade were likely to remain poor readers at the end of the fourth grade.
- Landerl \& Wimmer (2008): 70\% of poor readers in Grade 1 were below average readers in Grade 8
- Lyon et al. (1993): 74\% of reading disabled in the third grade continue to exhibit reading and spelling problems even at the ninth grade level.
- The reading development of a child is highly dependent upon the quality of early reading instruction...
- "quality classroom instruction in kindergarten and the primary grades is the single best weapon against reading failure" (Snow et al., 1998, p. 343)
- effective instruction can "beat the odds" (Denton, Foorman, \& Mathes, 2003)
- Reasons for Illiteracy:
- Environmental and Instructional Reasons:
- Distal Factors (Environment):
- Oral language Development (Hart \& Risley, 1995)
- Low language skills: 10 million $\rightarrow 500$
- Medium language skills: 20 million $\rightarrow 700$
- High language skills: 30 million $\rightarrow 1100$
- Juel (1988) end of First grade of schooling: good readers were exposed to 18,681 words; poor readers - 9,975
- Linguistically "poor" first graders knew 5,000 words; linguistically "rich" knew 20,000 words (Moats, 2001).

- B. Environmental Reasons:

- Number of books available at home (Chiu \& McBride-Chang, 2006);
- Parents reading to children; Enjoyment of reading (Chiu \& McBride-Chang, 2006)
- Good readers read 4 nights a week - poor readers read one night a week
- Gender Differences (Chiu \& McBride-Chang, 2006)

Brain organization - The universal reading network

Hindi Das, Joshi 2010, 2011

English, Das, Joshi, 2011

Chinese Tan et al., 2004

Neural Response to Instruction

Fletcher, J. (2007). What's Happening in the Reading Brain. Presentation at IDA, Dallas, TX

Reading level after 1 year of instruction

Seymour, Aro, \& Erskine et al. (2003), British Journal of Psychology

Items/min

Componential Model of Reading

Macrosystem

Exosystem

Mesosystem

Microsystem

e.g., child's individual relationships with parents or teachers
e.g., parent's effect on child's relationship with teachers
e.g., educational system

Bronfenbrenner's (1979) ecological approach applied to children's reading acquisition

Microsystem: Home Literacy Environment

HLE is the key explanatory variable in explicating the SES and sociocultural difference in literacy skills.

SES ~ storybook telling/parental involvement
Hamilton et al.(2016); Hermmerchts et al.(2016)
Read book daily: 64\% Caucasian, 48\% African-American; 42\% Hispanic parents Caucasian children: more books, and other language learning materials and devices.
Racial gap shrinks after controlling for SES
Bradley et al.(2001); Brooks-Gun \& Markman(2005); Yarosz \& Barnett(2001

Caution: lower SES families still do provide supportive HLE for children

Componential Model of Reading

A. PICTOGRAPHIC

read as what it pictures *:

origins old
modern
ri 'sun'
 shān 'hill' zī 'child' nü 'woman' niǎo 'bird' mù 'tree' shưi 'water' má 'horse' yáng 'sheep'
tiăn 'field'
"pictures," here and elsewhere, refer to the original forms, now hardly recognizable because of stylization.

B. IDEOGRAPHIC

a) read as a related idea*:

gāo
'high'
(picture of a tower)
b) read as the result of the 2 Ideas pictured:

[^0]

- జ జౌ జి జిఁ జు జృ జృ జ జిఁ జృ జృృ జృค జౌ జం జః

- ల లా లి లిఁ లు లృ లృ లి లిఁ లి, లిః లె๑ఁ లా లం లః

Orthographic Depth

Shallow.. Deep

Source. Seymour, Aro, and Erskine (2003).

	English	French	Czech	German	Spanish
No. of letters	26	26	$\begin{gathered} 39 \\ (13 v+26 C) \end{gathered}$	30	28-29 (w)
No. of phonemes	$\begin{gathered} 44 \\ (20 \mathrm{~V}+ \\ 24 \mathrm{C}) \end{gathered}$	$\begin{gathered} 38 \\ (19 \mathrm{~V}+19 \mathrm{C}) \end{gathered}$	$\begin{gathered} 37 \\ (6 V+25 C) \end{gathered}$	≈ 30	$\begin{gathered} 29 \\ (5 \mathrm{~V}+17 \mathrm{C}) \end{gathered}$
Phoneme letter ratio	1.7:1	1.5:1	1:1	1:1	1:1
No. of graphemes	≈ 250	≈ 165	42	~30	29

- Cognitive Components of CMR in Different Orthographies
- Simple View of Reading:
- Gough \& Tunmer (1986)
- Hoover \& Gough (1990)
- RC = D X LC
- If $\mathrm{D}=0$; then $\mathrm{RC}=0$; if $\mathrm{LC}=0$, then also $\mathrm{RC}=0$
- English - Spanish bilinguals
- Grades 1-4 50-60\%

The Many Strands that are Woven into Skilled Reading (Scarborough, 2001)

LANGUAGE COMPREHENSION
 BACKGROUND KNOWLEDGE
 VOCABULARY KNOWLEDEE
 LANGUAGE STRUCTURES VERBAL REASONING
 LITERACY KNOWLEDEE

WORD RECOGNITION
PHON. AWVARENESS
DECODING (andSPELLNG)
SIGHT RECOGNIIION

Distribution of different types of reading disabilities (Grades 3, 4, \& 6; 198 participants)

Adeq. Decoding poor decoding Poor comp
adeq. Comp
8\%
poor decoding
poor comp.
8\%

Aaron, P.G. \& Joshi, R.M. (1999). Not all reading disabilities are alike. Journal of Learning Disabilities, 32, 120-137.
Also see Leach, Scarborough, and Rescorla (2003); Stothard \& Hulme (1994); Oakhill \& Bryant (2003)

Aaron, P. G., Joshi, R.M., Boulware-Gooden, R., \& Bentum, K. (2008). Diagnosis and treatment of reading disabilities based on the Component Model of reading: An alternative to the Discrepancy Model of Learning Disabilities. Journal of Learning Disabilities, 41, 67-84.

```
Control Group
Pretest-Post-test
```

86.19 (12.553)
87.08 (11.485)
($\mathrm{n}=62$)
86.19 (12.553)
87.08 (11.485)
($\mathrm{n}=62$)
86.67 (14.124)
84.90 (12.974)
($\mathrm{n}=97$)
86.67 (14.124)
84.90 (12.974)
($\mathrm{n}=97$)

Treatment Group Pretest-Post-test 84.66 (9.965)
90.05 (11.418) ($\mathrm{n}=125$)
88.55 (12.083)
88.74 (12.811)
($\mathrm{n}=4.4$)
88.14 (12.403)
91.79 (12.486)
($\mathrm{n}=125$)
88.50 (9.477)
102.54 (10.608)

Decoding deficit: Decoding training

Decoding deficit: Comp. training

Comp. deficit: decoding training

Comp. deficit:
Comp. training

Gains in word attack and comprehension scores by treatment and comparison groups.

Language

Enblish

Tilstra et al. (2009)
$\frac{\text { French }}{\text { (Megherbi, Seigneuric, \& Ehrlich 2006) }}$
Norwegian $\quad 6 \quad 49 \%$

Høien-Tengesdal \& Hoien (2012)
Swedish $\quad 6 \quad 50 \%$

Høien-Tengesdal \& Hoien (2012
Dutch: de Jong and van der Leij (2002) 1-3 50\%

Grade levels $\begin{aligned} & \text { Total variance } \\ & \text { explained }\end{aligned}$ Results
2-10 40-70\%; Decoding: 4th graders $=42 \%$; 7th graders $=$ Grade $4=61 \% \quad 13 \%$
Grade $7=48 \% \quad$ L C: 4th graders $=19 \% ; 7$ th graders $=35 \%$ Grade $9=38 \%$
$1 \& 2>50 \% \quad$ Grade $1:$ Decoding $=27 \% ;$ LC $=39 \%(10 \%$ shared)
Grade 2 : Decoding $=16 \% ;$ LC $=44 \% ~(8 \%$ shared)

Mostly explained by LC; minimal contribution from decoding to RC from age 9

Mostly explained by LC; minimal contribution from decoding to RC from age 9

LC contributed much of the variance after grade 1

Greek: Protopapas, Sideridis, Mouzaki \& Simos, (2007)

Italian: Tobia \& Bonifacci (2015)
Persian: Sadeghi, Everatt \& McNeil (2016)

Application of CMR to other languages Spanish: (Joshi, Aaron, Tao Sha, \& Quiroz, 2012)

Grade	English	Spanish
2	$(n=49)$ LC \& $D=47 \%$	$(n=38)$ LC \& $D=57 \%$
3	$(n=54) L C ~ \& D=48 \%$	$(n=42) L C \& D=60 \%$
4	$(n=55) L C \& D=50 \%$	
2	$L C=33 \% ; D=35 \%$	$L C=45 \% ; D=25 \%$
3	$L C=37 \% ; D=35 \%$	LC=47\%;D=15\%
4	$L C=41 \% ; D=14 \%$	

- Grade 2; Character recognition \& LC = 25\%
- Grade 4; Character recognition \& LC = 42\%
- Character Rec. Grade 2 = 22\% ; Grade 4 = 32\%
- Listening Comp. Grade 2 = 11\%; Grade 4 = 31\%
- SVR in Chinese Cantonese (Ho et al., 2016)
- Hong Kong; grades 3-4
- Character Recog. + Fluency \& LC = 74\%
- Listening Comp. = 70\%
- CR \& Reading Fluency= 42\%

- SVR in Hebrew: (Joshi et al., 2015)

- 1002 students from grades 2 to 10 - N. Israel
- Phonological coding; orthographic coding; Listening Comprehension, \& Reading Comprehension
- Results:
- 37\% (Grade 6) to 70\% (Grade 4)
- D Grades 2 = 27\%; 4 = 26\%; $5=20 \% ; 6=8 \%$
-LC Grades 2 =17\%; 3 = 26\%; 9 = 60\%
- SVR in Arabic (Asadi, Khateb, \& Shany, 2016)
- 1,385 grades 1-6
- D, LC, RC, orthographic and morphological measures
- SVR
- Grade $1=56 \% ; 2=53 ; 3=50 ; 4=41 ; 5=38 ; 6=$ 40
- OA \& MA
- Gr. 1 \& 2 = 10\%; 3 \& 4 = 14\%; 5 = 22\%; $6=16 \%$
- $56-66 \%$
- First study of SVR (Hoover \& Gough) was based on bilingual/ESL population
- Geva \& Farnia (2012)
- Longitudinal study grades 2-5
- ELL and EL1 showed similar trend (explaining more than 60\% of the variance)
- Decoding more important in early grade levels
- However, in EL1 LC contributed more to RC earlier and ELL struggled with language tasks
- Verhoeven \& van Leeuwe; Dutch as a second language
- EFL (Erbeli \& Joshi, submitted) Slovenia
- $\mathrm{N}=480$ seventh graders (271 = skilled) (209 = LS)
- Even though 60% of the variance was explained by two factors, LC was a better predictor of RC for skilled readers
- Decoding for less skilled readers.

Nakamura, Joshi, de Hoop, \& Ji (2016, 2017, in Press)

Context of the Study

- $N=556$

- Grades 2-5
- Schools from urban 'slum' communities and rural villages
- Multilingual
- Biliteracy in Primary Literacy (Lit1) Kannada/Telugu; and Secondary Literacy (Lit2) English
- Mother Tongues: Kannada ($\mathrm{N}=78$); Telugu (N=132); Marathi ($\mathrm{N}=6$); Tamil ($\mathrm{N}=45$); Hindi $(\mathrm{N}=3)$; Urdu ($\mathrm{N}=10$)

Multiple Regressions by Grade

Low Elementary

B	SE B	β	B	$S E B$	β
.11	.12	.13	-.11	.10	-.11
.69	.17	$.56^{* * *}$.68	.14	$.53^{* * *}$
.08	.08	.41	.15	$.28^{* *}$	

High Elementary
$R^{2}=49 \%$

Note. PA = Phonological Awareness; Dec = Decoding; LC = Language Comprehension; RC = Reading Comprehension; *p<.05; ** $p<.01$; *** $p<$ 001.

- Approximately 50% of the variance was explained by the two factors
- Decoding in 'akshara' plays a stronger role even at the fifth grade level.
- L2 much better after a threshold (0.6) is reached in L1
- CMR applied to bilinguals

Decoding
good poor

- Dyslexia in bilinguals
- Hinshelwood (1895)
- 58 year old teacher of French and German languages
- Hinshelwood (1902), ‘. . how is it that there are so few recorded cases of these partial forms of word-blindness, that is, cases of dissociation in polyglots? I think the reason is simply that the patient is not thoroughly examined by testing his power of reading all the characters and all the languages with which he is familiar
- Obler (2012): Unfortunately, there is virtually no literature on childhood dyslexia in bilinguals.
- Klein and Doctor (2003) studied 3 cases of biscriptal dyslexics of English and Afrikaans.
- Problems in both the languages
- Abu-Rabia \& Siegel (2002)
- Arabic-English bilinguals in Canada
- Poor in Arabic were also poor in English tasks; bilingual poor readers performed better on certain tasks (non word; spelling) than monolingual English poor readers
- Abu-Rabia \& Siegel (2003)
- Less skilled readers were poor in phonological ability in Arabic, Hebrew and English.
- Wydell \& Butterworth (1999)
- 16 year-old English/Japanese bilingual boy
- Problem only in English but not in Japanese
- McBride-Chang, Liu, Wong, Wong, \& Shu (2014)
- PC, PE, \& PB: poor in PA tasks;
- PC \& PB: poor in MA
- PB: RAN
- Psycholinguistic Grain Size theory (Ziegler \& Goswami, 2005): differences in strategy during the reading acquisition process arise from the size of the speech unit represented by each written unit in a script.

- MS and VN: 16 years
- Comparison (8): 3-10; 3-16; and 2-14 years
- Background:

Tests administered

- Raven's Progressive Matrices (RPM)
- Letter/character naming: English \& Kannada
- Decoding (nonword and real word): English \& Kannada
- Listening Comp. : Word level (synonym judgment; grave-tomb) and passage level
- Reading Comp. : passage and cloze formats
- Spelling (dictation)
- Speed: letters/words
- PA
- (Joshi, et al., Dyslexia, 2010)

MS's performance in English and Kannada

Key: WR = Word Reading, LC WL = Listening Comprehension Word Level, LC PL = Listening Comprehension Passage Level, RC PL = Reading Comprehension Passage Level, RC CF = Reading Comprehension Cloze Format, SP = Spelling

VN's performance in English and Kannada

VN English

VN Kannada

Key: WR = Word Reading, LC WL = Listening Comprehension Word Level, LC PL = Listening Comprehension Passage Level, RC PL = Reading Comprehension Passage Level, RC CF = Reading Comprehension Cloze Format, SP = Spelling

- Dialectal Influences

- Treiman, Goswami, Tincoff, \& Leeves (1997)
- US children
- Doctor dkr, deor, docktur
- Hurt
- Card
- Girl
hrt, hrte,
crd, crdi, kird grl

British Children docke, docd, dot
hut, hoot, cud, cade gel

University students (Treiman \& Barry, 2000).

- British university students:
- Leper \rightarrow lepa
- Panther \rightarrow pantha
- Ether \rightarrow etha
- (only 1% of the U.S. students made errors like that).
- High incidence of reading problems among African Americans has been partly attributed to the differences in the spoken English and the Academic English (Scarborough, Charity)
- Teachers can readily understand the difficulties with reading and spelling experienced by many students learning English as a second language, but they may be baffled by the difficulties encountered by students who speak AAVE (African American Vernacular English).
- Characteristics of AAVE
- Omission of the verb form be in certain sentence patterns: He old for "He is old"
Past tense may not be marked by ed
- walked -> walk; called -> call. However, came and went are used correctly
- Differences in preposition use: He teach at Wilson Elementary for He teaches at Wilson Elementary
- To express a remote event, AAVE speakers will use stressed BÍN.
- AAVE: He BÍN married
- AE: He has been married for a very long time
- Pittman, Joshi, Carreker (2014)
- School: An inner city school in Houston and was Academically Unacceptable
- Participants: 124 sixth graders (2 teachers)

65 females 59 males
 57 comparison 67 treatment

- Fall semester: randomly assigned the participants
- December - Teacher training
- Language Variation Status (LVS) of the Diagnostic Evaluation of Language Variation (DELV; Seymour, Roeper, \& de Villiers, 2003)
- Spring semester - intervention started 25 minutes a week for 3 days a week for 8 weeks
- Means for the Comparison and Treatment Groups

Group	DELV	Spel-pre	Spel-2	Spel 3
Treatment	7.91	57.63	67.78	65.22
Comparison	7.79	61.40	61.26	69.37

Environmental Influences: (Home, school, and classroom)

 Home (Hart \& Richey; Chiu \& McBride-Chang) Inverse relationship between female literacy and infant mortality

Classroom Influences

Teacher knowledge
Moats (1994)
Bos et al., Cunningham et al., McCutchen et al.,

Are they poor in all aspects of linguistic knowledge?

	Phonemic knowledge	Syllabic knowledge
Moats (1994) (n=89) Inservice teachers	25\% (number of phonemes in ox)	19% knew all six syllable types
Bos et al (2001) 252 (PS) \& 286 (IS)	Box: 8\% \& 15\%	 64%
Mather et al. (2001) 293 (PS) \& 131 (IS)	Box: 2\% \& 19\%	Definition of a syllable: 52\% and 66%
Fielding-Barnsley \& Purdie (2005) 93 (PS); 209 (IS-sp.ed.); 38 (IS-sp.ed.)	Box: 15\%; 26\%; 37\%	$47 \% ; 53 \% ; 76 \%$
Cunningham et al. (2004) (720- IS 30% with Master's degree)	4%	46.5% High perceived KG $(n=490) 44.8 \% ~ l o w ~ p e r c e i v e d ~$ KG (n=207) 48.5\%
Joshi et al.	42%	$>90 \% *$

Heaven	No. of syllables correctly identified	No. of morphemes correctly identified
Observer	92%	40%
Teacher	96%	26%
Frogs	88%	48%
Spinster	90%	29%

University faculty

define and count the number of

 syllables correctlyIdentifying the definition of a phoneme
correctly recognize that "chef" and "shoe" begin with the same sound.
correctly recognize a word with two closed syllables (napkin)
correctly recognize the definition
of phonological awareness

No. of morphemes: heaven Observer Frogs Name all the 5 components of NRP (3/20)

First Year Teachers
$\approx 92 \%$

98%	89%

92%	88%

65\%
53\%

47\%

40\%
26\%
29\%
15\%
$\approx 92 \%$

88\%

58\%

21\%
18\%
24\%
0\%

Similar findings from other English countries and China, Korea, German,

Solution: Professional Development

Texas Higher Education Collaborative (HEC)
Provide seminars based on SBRR, support with the preparation of syllabi, free supply of reading materials,

Breakdown of Survey Participants

Means and Standard Deviations for Scores of Sample Subsets by Item Category
Overall

Non-HEC
University Instructors

HEC University Instructors

Non-HEC PreService Teachers

HEC Pre-Service Teachers

Knowledge

Ability

Morphological

Phonemic

$$
\begin{gathered}
0.5261 \\
(0.4994)
\end{gathered}
$$

$$
\begin{array}{cc}
0.6221 & 0.5950 \\
(0.4849) & (0.4910)
\end{array}
$$

$$
\begin{array}{|cc|}
\hline 0.3297 & 0.2652 \\
(0.4702) & (0.4418) \\
0.6408 & 0.6235 \\
(0.4798) & (0.4848) \\
\hline
\end{array}
$$

$$
\begin{gathered}
0.3729 \\
(0.4837)
\end{gathered}
$$

$$
0.5511
$$

$$
(0.4975)
$$

0.2150
(0.4111)
0.5313
(0.4992)
0.7222
(0.4484)
0.3484
(0.4767)
0.6136
(0.4873)

$$
\begin{gathered}
0.6790 \\
(0.4670)
\end{gathered}
$$

$$
\begin{aligned}
& 0.3841 \\
& (0.4869) \\
& 0.7664 \\
& (0.4234)
\end{aligned}
$$

$$
0.5798
$$

$$
(0.4941)
$$

Li, Joshi, et al

- Different contribution of each domain to Reading comprehension
- Cognitive (1st)
-Psychological (2 ${ }^{\text {nd }}$)
-Ecological (3rd)
- Unique (direct and indirect) relation of each domain with reading comprehension
- Cognitive (direct)
-Psychological (direct)
-Ecological (indirect)

- Cognitive domain: Mediator

- Cognitive domain is more associated with ecological domain than with psychological domain
- Reciprocal relationship between psychological domain \Leftrightarrow reading comprehension
- 1. Matthew Effect in Reading
- (rich getting richer poor getting poorer)
- 2. John Effect in Reading
- (In the beginning was the word)
- 3. Peter Effect in Reading (Joshi et al., 2012, 2015)
- (one cannot give to others what s/he does not have)
- Conclusions
- 1. Illiteracy is of global concern and affects individual, society, and nation
- 2. Decoding (D) and linguistic comprehension (LC) can explain much of the variance in reading comprehension (RC) while IQ scores predict about 25% of the variance in RC.
- 3. Decoding contributes more at the early grade levels and comprehension more at the upper grade levels. Decoding may play an important role in reading comprehension for a more prolonged time in a more opaque orthography. Language comprehension becomes more important for reading comprehension from the beginning to the more advanced stage.
- 4. Literacy acquisition and literacy problems among bilinguals may be influenced by the type of writing systems and the 'orthographic distance' between the two languages.
- 5. When University instructors were provided with the knowledge through professional development and mentoring, there was a gain in the knowledge among both instructors and preservice teachers.
-6. Considering that the majority of the world's population is bilinguals, more research studies on bilinguals are needed
- 7. Classification of writing systems/orthographies needs reorganization
- Share and Daniels (2015), Daniels and Share (2017):
- classifying orthographies on ten different dimensions such as, linguistic distance, visual complexity, spelling constancy despite morphophonemic alternation, omission of phonological elements, allography, dual purpose letters, ligaturing,

Thank you
Kiitos paljon Hartelijk Dank ش~ ش ش 고맙습니다 धन्यवाद
Danke schön Спасибо
Muchisimas Gracias תוֹדָה רַּקַּ
Merci beaucoup $\varepsilon v \chi \alpha р ı \sigma є \emptyset$
Děkuji Mnohokrát
Tack så mycket

[^0]: "idea," here and elsewhere, refers to characters used as mean-ing-indicators in contrast to speech-sound indicators. However, characters always represent definite words of spoken Chinase, not ideas that may be stated in different ways.

